Before heading into nanotoxicology over the next few weeks (the bit that there is), I wanted to add the following tidbits both of which I think reiterate the need for sincere action – in the spirit of avoiding the inevitable shoulda, coulda, woulda, or maybe worse inertia:
1) The U.K. Council for Science and Technology, cautions that unlike in the past government “must cease to rely primarily on responsive mode of funding to fill the knowledge gaps.”
2) In their history of nanotoxicology, Oberdorster, Stone and Donaldson (2007) referring to abundance of national and international meetings producing and associated reports, “…these reports are not followed by appropriate action, thus creating the impression that there may be just too many of these meetings without serious follow-up.”
So as development and production of NP steams ahead of health effects research, for what it’s worth, national and international governments and regulators are wary and eager to track progress related to analysis and evaluation of the health impacts of nanoparticles (NP).
The result is an international consensus on some key issues that should guide future research and regulatory efforts:
1) There are potential differences of NP behavior in both the environment and in biological systems compared with their larger (or smaller) counterparts, and the potential inadequacy of traditional toxicity exposure and testing currently employed to evaluate NP toxicity. (And if you really read this – you note the overuse of potential. Of course there are plenty of synonyms, possible, probable, likely, impending – but the point is, we just don’t know enough to know right now – and so it’s all possible, probable and maybe even likely.)
2) These potential differences include differences in dose metrics, absorption and distribution as a result of size and/or external modifications, mechanisms of toxicity as a result of increased access to cell matrices or generation of reactive oxygen species because of new characteristics such as increased surface area (in addition to many as yet characterized differences.)
3) Many traditional testing and detection methodology may be inappropriately applied to NP. Further, beyond the current understanding of the impacts of natural and combustion-related NP on the lung, and the toxicity of fibers related to occupational exposures (both areas of research which currently lay the foundation for NP toxicology – appropriately or not), there is consensus that data on the impacts of NP (either naturally derived or engineered) in humans and on environmental receptors is insufficient or worse, altogether lacking.
And, on that note, have a nice weekend.
No comments:
Post a Comment